Global geopotential models from Satellite Laser Ranging data with geophysical applications: A review

  • Christina M. Botai University of Pretoria
  • Ludwig Combrinck University of Pretoria
Keywords: space geodesy, Satellite Laser Ranging, gravity fields, geopotential models, Earth oblateness


The launch of artificial satellites (as early as in 1957), specifically the launch of the first laser tracked satellite, Beacon-B, in 1964, has provided data sets which have allowed researchers to probe the long to medium components of the gravitational field of the Earth. In particular, observational data recorded at satellite laser ranging tracking stations have since been used to develop models that quantify the global long-wavelength and medium-wavelength gravity field of the Earth. Currently, literature reviewing gravity field models with geophysical applications is scarce and not up to date. The most recent review paper was published more than a decade ago. In the interim, there has been an unprecedented increase in gravity field modelling, which can be attributed to the deployment of new and dedicated satellite missions. As a result, a number of existing geopotential models have been improved and new models have been developed. Each of these models differs in accuracy and spatial-temporal scale. This review extends the earlier review of gravity field models, by incorporating up-to-date research efforts in geopotential modelling with geophysical applications in oceanography, hydrology, geodesy and solid Earth science.

Author Biographies

Christina M. Botai, University of Pretoria
Hartebeesthoek Radio Astronomy Observatory
South Africa
Ludwig Combrinck, University of Pretoria
Hartebeesthoek Radio Astronomy Observatory
South Africa


1. Blakely RJ. Potential theory in gravity and magnetic applications. Cambridge, NY: Cambridge University Press; 1995.

2. Dickey JO, Marcus SL, De Viron O, Fukumori I. Recent Earth oblateness variations: Unraveling climate and postglacial rebound effects. Science. 2002;298:1975–1977., PMid:12471253

3. Dickey JO, Bentley CR, Bilham R, et al. Satellite gravity and the geosphere: Contributions to the study of the solid Earth and its fluid envelope. Washington DC: National Academic Press; 1997.

4. Forsberg R, Sideris MG, Shum CK. The gravity field and GGOS. J Geodynamics. 2005;40:387–393.

5. Seeber G. Satellite geodesy: Foundations, methods, and applications. 2nd ed. Berlin: Walter de Gruyter; 2003.

6. Combrinck L. Satellite Laser Ranging. In: Xu G, editor. Sciences of geodesy I – Advances and future directions. Berlin: Springer Verlag, 2010; p. 301–336.

7. Yunck TP. Orbit determination. In: Parkinson BW, Spilker JJ, editors. Global positioning system: Theory and applications, Vol 2. Progress in Astronautics and Aeronautics. Reston, VA: American Institute of Aeronautics and Astronautics, 1997; p. 567–585.

8. Colombo OL, Luthcke SB. Kinematic point positioning of a LEO, with simultaneous reduced-dynamic orbit estimation. Paper presented at: ION GNSS 2004. Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation; 2004 Sept 21–24; Long Beach, CA, USA.

9. Yunck TP, Bertiger WI, Wu SC, et al. First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon. Geophys Res Lett. 1993;21:2179–2182.

10. Tapley BD, Bettadpur S, Watkins M, Reigber C. The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett. 2004;31:L09607.

11. Ellmann A, Jurgenson H. Evaluation of a GRACE-based combined geopotential model over the Baltic countries. Geod Cartograf. 2008;34(2):35–44.

12. Amos MJ, Featherstone WE. Comparisons of global geopotential models with terrestrial gravity field data over New Zealand and Australia. Geomatics Res Australas. 2003;78:67–84.

13. Heck B. An evaluation of some systematic error sources affecting terrestrial gravity anomalies. Bull Geodesique. 1990;64:88–108.

14. Kearsley AHW, Forsberg R. Tailored geopotential models – Applications and shortcomings. Manuscripta geodaetica. 1990;15:151–158.

15. International Centre for Global Earth Models [homepage on the Internet]. c2011 [cited 2011 Aug 04]. Available from:

16. Rapp RH. Past and future developments in geopotential modelling. In: Forsberg R, Feissl M, Dietrich R, editors. Geodesy on the move. Berlin: Springer, 1997; p. 58–78.

17. Schwintzer P, Reigber C, Massmann F-H, et al. A new Earth gravity field model in support of ERS-1 and SPOT-2, Final report to the German Space Agency (DARA) and the French Space Agency (CNES). Munich: German Geodetic Research Institute; Toulouse: Groupe de Recherches de Geodesie Spatiale; 1991.

18. Rapp RH, Wang YM, Pavlis NK. The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models. Report 410. Columbus, OH: Department of Geodetic Science and Surveying, Ohio State University; 1991.

19. Tapley B, Watkins M, Ries J, et al. The joint gravity model 3. J Geophys Res. 1996;101(B12):28029–28049.

20. Schwintzer P, Reigber C, Bode A, et al. Long-wavelength global gravity field models: GRIM4S4, GRIM4C4. J Geodesy. 1997;71:189–208.

21. Gruber T, Anzenhofer M, Rentsch M. Improvements in high resolution gravity field modeling at GFZ. In: Segawa J, Fujimoto H, Okubo S, editors. Gravity, geoid and marine geodesy. Berlin: Springer, 1997; p. 445–452.

22. Lemoine FG, Kenyon SC, Factor JK, et al. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Paper NASA/TP1998206861. Greenbelt, MD: Goddard Space Flight Center; 1998.

23. Gruber T, Bode A, Reigber C, et al. GRIM5-C1: Combination solution of the global gravity field to degree and order 120. Geophys Res Lett. 2000;27(24):4005–4008.

24. Dobslaw H, Schwintzer P, Barthelmes F, et al. Geostrophic ocean surface velocities from TOPEX altimetry, and CHAMP and GRACE satellite gravity models. Scientific technical report 04/07. Potsdam: GeoForschungs Zentrum; 2004.

25. Reigber C, Balmino G, Schwintzer P. A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett. 2002;29(14):1–4.

26. Reigber C, Schwintzer P, Neumayer KH, et al. The CHAMP-only Earth gravity field model EIGEN-2. Adv Space Res. 2003;31(8):1883–1888.

27. Tapley B, Ries J, Bettadpur S, et al. GGM02 – An improved Earth gravity field model from GRACE. J Geodesy. 2005;79:467–478.

28. Foerste C, Schmidt R, Stubenvoll R, et al. The GFZ/GRGS satellite and combined gravity field models EIGEN-GL04S1 and EIGEN-GL04C. J Geodesy. 2006;82(6):331–346.

29. Foerste C, Flechtner F, Schmidt R. A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS co-operation. Geophys Res Abstr. 2008;10:EGU2008A-03426.

30.Pavlis NK, Holmes SA, Kenyon SC, Factor JK. An Earth gravitational model to degree 2160: EGM2008. Vienna: EGU General Assembly; 2008.

31. Rummel R, Balmino G, Johnhannessen J, Visser P, Woodworth P. Dedicated gravity field missions – Principles and aims. J Geodyn. 2002;33:3–20.

32. Featherstone WE. Improvement to long-wavelength Australian gravity anomalies expected from the CHAMP, GRACE and GOCE dedicated satellite gravimetry missions. Explor Geophys (Collingwood, Aust). 2003;34:69–76.

33. Foerste C, Stubenvoll R, Koenig R, et al. Evaluation of EGM2008 by comparison with other recent global gravity field models. Newton’s Bull. 2009;4:26–37.

34. Moore P, Zhang Q, Alothman A. Recent results on the modeling of the spatial and temporal structure of the Earth’s gravity field. Phil Trans R Soc. 2006;A364:1009–1026.

35. Zhang KF, Featherstone WE. The statistical fit of high degree geopotential models to the gravity field of Australia. Geomatics Res Australas. 1995;63:1–18.

36. Pearse MB, Kearsley AHW. Analysis of EGM models in New Zealand. Int Geoid Serv Bull. 1996;6:203–213.

37. Kirby JF, Featherstone WE, Kearsley AHW. Tests of the DMA/GSFC geopotential models over Australia. Int Geoid Serv Bull. 1998;7:213.

38. Ellmann A. The geoid for the Baltic countries determined by the least squares modification of Stokes’ formula. Geodesy Report No. 1061. Stockholm: Royal Institute of Technology, Department of Infrastructure; 2004.

39. Yilmaz I, Yilmaz M, Gullu M, Turgut B. Evaluation of recent global geopotential models based on GPS/leveling data over Afyonkarahisar (Turkey). Sci Res Essays. 2010;5(5):484–493.

40. Botai MC, Combrinck L. Investigating the accuracy of gravity field models using Satellite Laser Ranging data. S Afr J Geol. 2011;114(3–4):539–544.

41. Cox CM, Au A, Boy J-P, Chao BF. Time-variable gravity: Using Satellite-Laser-Ranging as a tool for observing long-term changes in the Earth system. In: Noomen R, Klosko S, Noll C, Pearlman M, editors. Proceedings of the 13th International Workshop on Laser Ranging. Greenbelt, MD: NASA Goddard Space Flight Center; 2003.

42. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM. GRACE measurements of mass variability in the Earth system. Science. 2004;305:503–505.

43. Wahr J, Molenaar M, Bryan F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res. 1998;103:30205–30230.

44. Klosko S, Chao B. Secular variations of the zonal gravity field, global sea level and polar motion as geophysical constraints. Phys Chem Earth. 1998;23(9–10):1091–1102.

45. Chen JL, Wilson CR. Low degree gravitational changes from Earth rotation and geophysical models. Geophys Res Lett. 2003;30(24):2257.

46. Chen JL, Wilson CR, Tapley BD. Interannual variability of low-degree gravitational change, 1980–2002. J Geodesy. 2005;78:535–543.

47. Yoder CF, Williams JG, Dickey JO, Schutz BE, Eanes RJ, Tapley BD. Secular variations of Earth’s gravitational harmonic J2 coefficient from Lageos and the non-tidal acceleration of Earth rotation. Nature. 1983;303:757–762.

48. Cox CM, Chao BF. Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science. 2002;297:831–832., PMid:12161652

49. Nerem RS, Eanes RJ, Thompson PF, Chen JL. Observations of annual variations of the Earth’s gravitational field using satellite laser ranging and geophysical models Geophys Res Lett. 2000;27:1783–1786.

50. Benjamin D, Wahr J, Ray RD, Egbert GD, Desai SD. Constraints on mantle anelasticity from geodetic observations, and implications for the anomaly. Geophys J Int. 2006;165:3–16.

51. Eubanks TM. Variations in the orientation of the Earth, in contributions of space geodesy to geodynamics: Earth dynamics. Geodyn Series volume 24. Washington DC: American Geophysical Union, 1993; p. 1–54.

52. Ponsar S, Dehant V, Holme R., Jault D, Pais A, Van Hoolst T. The core and fluctuations in the Earth’s rotation, in Earth’s core: Dynamics, structure, rotation. Washington DC: Geodyn, American Geophysical Union, 2003; p. 251–261.

53. Gross RS, Fukumori I, Menemenlis D. Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J Geophys Res. 2003;109:B01406.

54. Eckman M. What is the geoid? In: Vermeer M, editor. Coordinate systems, GPS, and the geoid. Report 95:5 of the Finnish Geodetic Institute. Masala: Finnish Geodetic Institute, 1998; p. 49–51.

55. Rapp RH. Global models for the 1 cm geoid – Present status and near term prospects. In: Sanso F, Rummel R, editors. Geodetic boundary value problems in view of the one centimeter geoid. Berlin: Springer, 1997; p. 273–311.

56. Kiamehr R, Sjoberg LE. Comparison of the qualities of recent global and local gravimetric geoid models in Iran. Stud Geophys Geod. 2005;49:289–304.

57. Chandler G, Merry CL. The South African geoid 2010: SAGEOID10. Position IT. 2010(June):29–33.

58. Merry C. Evaluation of global geopotential models in determining the quasigeoid for South Africa. Surv Rev. 2007;39(305):180–192.

59. Cazenave A, Nerem RS. Present-day sea level change: Observations and causes. Rev Geophys. 2004;42:RG3001.

60. Woodworth PL. Some important issues to do with long-term sea level change. Phil Trans R Soc A. 2006;364:787–803., PMid:16537140

61. Andersen OB, Hinderer J. Global inter-annual gravity changes from GRACE: Early results. Geophys Res Lett. 2005;32:L01402.

62. Andersen OB, Seneviratne SI, Hinderer J, Viterbo P. GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys Res Lett. 2005;32:L18405.

63. Neumeyer J, Barthelmes F, Dierks O, et al. Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geodesy. 2006;79(10–11):573–585.

64. Winsemius HC, Savenije HHG, Van den Hurk NC, Zapreeva EA, Klees R. Assessment of gravity recovery and climate experiment (GRACE) temporal signature over the upper Zambezi. Water Resour Res. 2006;42:2–8.

65. Torrence M. Lageos-1, -2 [homepage on the Internet]. No date [cited 2012 Feb 08]. Available from:

66. International Laser Ranging Service [homepage on the Internet]. c2009 [updated 2009 Feb 26, cited 2012 Feb 08]. Available from:

67. Combrinck L, Haupt W. MOBLAS-6 at HartRAO [homepage on the Internet]. No date [cited 2012 Feb 08]. Available from: