The first animals: ca. 760-million-year-old sponge-like fossils from Namibia

  • C. K. ‘Bob’ Brain Ditsong Museum
  • Anthony R. Prave University of St Andrews
  • Karl-Heinz Hoffmann Ministry of Mines and Energy
  • Anthony E. Fallick Scottish Universities Environmental Research Centre
  • Andre Botha University of Pretoria
  • Donald A. Herd University of St Andrews
  • Craig Sturrock University of Nottingham
  • Iain Young University of New England
  • Daniel J. Condon NERC Isotope Geosciences Laboratory
  • Stuart G. Allison University of St Andrews
Keywords: Cryogenian, Otavi Group, Nama Group, sponges, metazoans, Neoproterozoic

Abstract

One of the most profound events in biospheric evolution was the emergence of animals, which is thought to have occurred some 600–650 Ma. Here we report on the discovery of phosphatised body fossils that we interpret as ancient sponge-like fossils and term them Otavia antiqua gen. et sp. nov. The fossils are found in Namibia in rocks that range in age between about 760 Ma and 550 Ma. This age places the advent of animals some 100 to 150 million years earlier than proposed, and prior to the extreme climatic changes and postulated stepwise increases in oxygen levels of Ediacaran time. These findings support the predictions based on genetic sequencing and inferences drawn from biomarkers that the first animals were sponges. Further, the deposition and burial of Otavia as sedimentary particles may have driven the large positive C-isotopic excursions and increases in oxygen levels that have been inferred for Neoproterozoic time.

References

1.Xiao S, Zhang Y, Knoll AH. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature. 1998;391(6667):553–558. http://dx.doi.org/10.1038/35318

2.Hagadorn JW, Xiao S, Donoghue PCJ, et al. Cellular and subcellular structure of Neoproterozoic animal embryos. Science. 2006;314(5797):291–294. http://dx.doi.org/10.1126/science.1133129, PMid:17038620

3.Yin L, Zhu M, Knoll AH, Yuan X, Zhang J, Hu J. Doushantuo embryos preserved inside diapause egg cysts. Nature. 2007;446(7136):661–663. http://dx.doi.org/10.1038/nature05682, PMid:17410174

4.Narbonne GM. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Ann Rev Earth Planet Sci. 2005;33:421–442. http://dx.doi.org/10.1146/annurev.earth.33.092203.122519

5.Jensen S, Gehling JG, Droser ML. Ediacaran-type fossils in Cambrian sediments. Nature. 1998;393(6685):567–569. http://dx.doi.org/10.1038/31215

6.Grotzinger J, Watters W, Knoll AH. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology. 2000;26(3):334–359. http://dx.doi.org/10.1666/0094-8373(2000)026<0334:CMITSR>2.0.CO;2

7.Amthor JE, Grotzinger JP, Schroeder S, et al. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology. 2003;31(5):431–434. http://dx.doi.org/10.1130/0091-7613(2003)031<0431:EOCANA>2.0.CO;2

8.Grotzinger JP, Bowring SA, Saylor BZ, Kaufman AJ. Biostratigraphic and geochronologic constraints on early animal evolution. Science. 1995;270(5236):598–604. http://dx.doi.org/10.1126/science.270.5236.598

9.Martin MW, Grazhdankin DV, Bowring SA, Evans DAD, Fedonkin MA, Kirschvink JL. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: Implications for metazoan evolution. Science. 2000;288(5467):841–845. http://dx.doi.org/10.1126/science.288.5467.841, PMid:10797002

10.Condon DJ, Maoyan Z, Bowring SA, Wei W, Aihua Y, Yugan J. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science. 2005;308(5718):95–98. http://dx.doi.org/10.1126/science.1107765, PMid:15731406

11.Seilacher S, Bose PK, Pflueger F. Triploblastic animals more than 1 billion years ago: Trace fossil evidence from India. Science. 1998;281(5386);80–83. http://dx.doi.org/10.1126/science.282.5386.80, PMid:9756480

12.Rasmussen B, Bengston S, Fletcher IR, McNaughton NJ. Discoidal impressions and trace-like fossils more than 1200 million years old. Science. 2002;296(5570);1112–1115. http://dx.doi.org/10.1126/science.1070166, PMid:12004128

13.Doolittle RF, Feng DF, Tsang S, Cho G, Little E. Determining divergence times of major kingdoms of living organisms with a protein clock. Science. 1996;271(5248);470–477. http://dx.doi.org/10.1126/science.271.5248.470, PMid:8560259

14.Wray GA, Levinton JS, Shapiro LH. Molecular evidence for deep Precambrian divergence among metazoan phyla. Science. 1996;274(5287):568–573. http://dx.doi.org/10.1126/science.274.5287.568

15.Peterson KJ, Butterfield NJ. Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc Natl Acad Sci USA. 2005;102(27):9547–9552. http://dx.doi.org/10.1073/pnas.0503660102, PMid:15983372, PMCid:1172262

16.Maloof AC, Rose CV, Beach R, et al. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nat Geosci. 2010;3(9):653–659. http://dx.doi.org/10.1038/ngeo934

17.Li CW, Chen JY, Hua TE. Precambrian sponges with cellular structures. Science. 1998;279(5352):879–882. http://dx.doi.org/10.1126/science.279.5352.879, PMid:9452391

18.Brasier MD, Green O, Shields G. Ediacaran sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology. 1997;25(4):303– 306. http://dx.doi.org/10.1130/0091-7613(1997)025<0303:ESSCFS>2.3.CO;2

19.Gehling JG, Rigby JK. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. J Palaeont. 1996;70(2):185–195.

20.Wood RA, Grotzinger JP, Dickson JAD. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science. 2002;296(5577):2383–2386. http://dx.doi.org/10.1126/science.1071599, PMid:12089440

21.Love GD, Grosjean E, Stalvies C, et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian. Nature. 2009;457(7230):718–723. http://dx.doi.org/10.1038/nature07673, PMid:19194449

22.Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Rice AHN. Toward a Neoproterozoic composite carbon-isotope record. Geol Soc Amer Bull. 2005;117(9):1181–1207. http://dx.doi.org/10.1130/B25630.1

23.Knauth LP, Kennedy MJ. The late Precambrian greening of the Earth. Nature. 2009;460(7256):728–732. PMid:19587681

24.Derry LA. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth Planet Sci Lett. 2010;294(1–2):152–162. http://dx.doi.org/10.1016/j.epsl.2010.03.022

25.Brain CK, Hoffmann K-H, Prave AR, Fallick AE, Coetzee J, Botha AJ. Interpretive problems in a search for micro-invertebrate fossils from a Neoproterozoic limestone in Namibia. Palaeontologia Africana. 2001;37(1–12):1–12.

26.Aitchison J, Brown JAC. The lognormal distribution. Cambridge: Cambridge University Press; 1957.

27.Fallick AE, Pillinger CT, Stephenson A, Housley RM. Concerning the size distribution of ultrafine iron in lunar soil. Abstracts of papers presented to the Fourteenth Lunar and Planetary Science Conference. 1983;14:185–186.

28.Javaux EJ, Marshall CP, Bekker A. Organic walled microfossils in 3.2 billion year old shallow-marine siliciclastic deposits. Nature. 2010;463(7283):934–938. http://dx.doi.org/10.1038/nature08793, PMid:20139963

29.Hoffmann K-H, Condon DJ, Bowring SA, Crowley JL. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology. 2004;32(9):817–820. http://dx.doi.org/10.1130/G20519.1

30.Bosak T, Lahr DJG, Pruss SB, Macdonald FM, Dalton L, Matys E. Agglutinated tests in post-Sturtian cap carbonates of Namibia and Mongolia. Earth Planet Sci Lett. 2011;308(1–2):29–40. http://dx.doi.org/10.1016/j.epsl.2011.05.030

31.Rothman DH, Hayes JM, Summons RE. Dynamics of the Neoproterozoic carbon cycle. Proc Nat Acad Sci USA. 2003;100(14):8124–8129. http://dx.doi.org/10.1073/pnas.0832439100, PMid:12824461, PMCid:166193

32.Hoffman PF, Schrag DP. The snowball Earth hypothesis; testing the limits of global change. Terra Nova. 2002;14(3):129–155. http://dx.doi.org/10.1046/j.13653121.2002.00408.x

33.Fike DA, Grotzinger JP, Pratt LM, Summons RE. Oxidation of the Ediacaran Ocean. Nature. 2006;444(7120):744–747. http://dx.doi.org/10.1038/nature05345, PMid:17151665

34.Canfield DE, Poulton SW, Narbonne GM. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science. 2007;315(5808):92–95. http://dx.doi.org/10.1126/science.1135013, PMid:17158290
Published
2012-01-18