Effects of non-thermal mobile phone radiation on breast adenocarcinoma cells

  • Barend A. Stander Department of Physiology, University of Pretoria
  • Sumari Marais Department of Physiology, University of Pretoria
  • Carin Huyser Reproductive Biology Laboratory, Department of Obstetrics and Gynaecology, University of Pretoria
  • Zen Fourie South African Bureau of Standards
  • Dariusz Leszczynski Functional Proteomics Group, Radiation Biology Laboratory, STUK Radiation and Safety Authority
  • Annie M. Joubert Department of Physiology, University of Pretoria
Keywords: mobile phone radiation, metabolic activity, cell morphology, cell cycle progression, phosphatidylserine externalisation, reactive oxygen species, reactive nitrogen species

Abstract

Mobile phone usage currently exceeds landline communication in Africa. The extent of this usage has raised concerns about the long-term health effects of the ongoing use of mobile phones. To assess the physiological effects of radiation from mobile phones in vitro, MCF-7 breast adenocarcinoma cells were exposed to 2W/kg non-thermal 900-MHz mobile phone radiation. The effects investigated were those on metabolic activity, cell morphology, cell cycle progression, phosphatidylserine (PS) externalisation and the generation of reactive oxygen species and nitrogen species. Statistically insignificant increases in mitochondrial dehydrogenase activity were observed in irradiated cells when compared to controls. Fluorescent detection of F-actin demonstrated an increase in F-actin stress fibre formation in irradiated MCF-7 cells. Cell cycle progression revealed no statistically significant variation. A small increase in early and late apoptotic events in irradiated MCF-7 cells was observed. No statistically significant changes were observed in reactive oxygen and reactive nitrogen species generation. In addition, quantitative and qualitative analyses of cell cycle activity and nuclear and cytosolic changes, respectively, revealed no significant changes. In conclusion, exposure to 1 h of 900-MHz irradiation induced an increase in PS externalisation and an increase in the formation of F-actin stress fibres in MCF-7 cells. Data obtained from this study, and their correlation with other studies, provides intriguing links between radio frequency radiation and cellular events and warrant further investigation.

References

1. Ahlbom AGL, Kheifets L, Savitz D, Swerdlow A. International Commission for Non-ionizing Radiation Protection Standing Committee on Epidemiology: Epidemiology of health effects of radiofrequency exposure. Environ Health Perspect. 2004;112:1741–1754. PMid:15579422, PMCid:1253668

2. Leszczynski D, Nylund R, Joenvaara S, Reivinen J. Applicability of discovery science approach to determine biological effects of mobile phone radiation. Proteomics. 2004;4(2):426–431. doi:10.1002/pmic.200300646, PMid:14760712

3. Leszczynski D, Meltz ML. Questions and answers concerning applicability of proteomics and transcriptomics in EMF research. Proteomics. 2006;6(17):4674–4677. doi:10.1002/pmic.200600414, PMid:16888768

4. Leszczynski D, Joenvaara S, Reivinen J, Kuokka R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation. 2002;70(2-3):120–129. doi:10.1046/j.14320436.2002.700207.x, PMid:12076339

5. Nylund R, Leszczynski D. Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics. 2004;4(5):1359– 1365. doi:10.1002/pmic.200300773, PMid:15188403

6. Nylund R, Leszczynski D. Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent. Proteomics. 2006;6(17):4769–4780. doi:10.1002/pmic.200600076, PMid:16878295

7. Remondini D, Nylund R, Reivinen J, et al. Gene expression changes in human cells after exposure to mobile phone microwaves. Proteomics. 2006;6(17):4745–4754. doi:10.1002/pmic.200500896, PMid:16878293

8. Merola P, Marino C, Lovisolo GA, Pinto R, Laconi C, Negroni A. Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field. Bioelectromagnetics. 2006;27(3):164–171. doi:10.1002/bem.20201, PMid:16437547

9. Qutob SS, Chauhan V, Bellier PV, et al. Microarray gene expression profiling of a human glioblastoma cell line exposed in vitro to a 1.9 GHz pulse- modulated radiofrequency field. Radiat Res. 2006;165(6):636–644. doi:10.1667/RR3561.1, PMid:16802863

10. Whitehead TD, Moros EG, Brownstein BH, Roti Roti JL. Gene expression does not change significantly in C3H 10T(1/2) cells after exposure to 847.74 CDMA or 835.62 FDMA radiofrequency radiation. Radiat Res. 2006;165(6):626–635. doi:10.1667/RR3560.1, PMid:16802862

11. Zeni O, Romano M, Perrotta A, et al. Evaluation of genotoxic effects in human peripheral blood leukocytes following an acute in vitro exposure to 900 MHz radiofrequency fields. Bioelectromagnetics. 2005;26(4):258–265. doi:10.1002/bem.20078, PMid:15832336

12. Stronati L, Testa A, Moquet J, et al. 935 MHz cellular phone radiation. An in vitro study of genotoxicity in human lymphocytes. Int J Radiat Biol. 2006;82(5):339–346. doi:10.1080/09553000600739173, PMid:16782651

13. Yu D, Shen Y, Kuster N, Fu Y, Chiang H. Effects of 900 MHz GSM wireless communication signals on DMBA-induced mammary tumors in rats. Radiat Res. 2006;165(2):174–180. doi:10.1667/RR3497.1, PMid:16435916

14. Leszczynski D. The need for a new approach in studies of the biological effects of electromagnetic fields. Proteomics. 2006;6(17):4671–4673. doi:10.1002/pmic.200690099, PMid:16933341

15. Collection ATC. Product description: MCF-7 [homepage on the Internet]. c2009 [cited 2011 July 19]. Available from: https://www.atcc.org/ATCCAdvancedCatalogSearch/ProductDetails/tabid/452/Default.aspx?ATCCNum=HTB-22&Template=cellBiology

16. Falzone N, Huyser C, Fourie F, Toivo T, Leszczynski D, Franken D. In vitro effect of pulsed 900 MHz GSM radiation on mitochondrial membrane potential and motility of human spermatozoa. Bioelectromagnetics. 2008;29(4):268–276. doi:10.1002/bem.20390, PMid:18163440

17. Falzone N, Huyser C, Franken DR. Comparison between propidium iodide and 7-amino-actinomycin-D for viability assessment during flow cytometric analyses of the human sperm acrosome. Andrologia. 2010;42(1):20–26. doi:10.1111/j.1439-0272.2009.00949.x, PMid:20078512

18. Falzone N, Huyser C, Becker P, Leszczynski D, Franken DR. The effect of pulsed 900-MHZ GSM mobile phone radiation on the acrosome reaction, head morphometry and zona binding of human spermatozoa. Int J Androl. 2011;34(1):20–26. doi:10.1111/j.1365-2605.2010.01054.x

19.. SEMCAD X. Reference manual for the SEMCAD simulation platform for electromagnetic compatibility, antenna design and dosimetry. Zurich: SPEAG Schmid & Partner Engineering AG. Available from: http://www.semcad.com

20. Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem. 1997;69(2):581–593. doi:10.1046/j.1471-4159.1997.69020581.x

21. Lillie RD. Histopathologic technic and practical histochemistry. New York: McGraw-Hill; 1965.

22. Rothe G, Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2’,7’-dichlorofluorescin. J Leukoc Biol.1990;47(5):440–448. PMid:2159514

23. Zhao HKS, Zhang H, Joseph J, Nithipatikom K, Vásquez-Vivar J, Kalyanaraman B. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: Potential implications in intracellular fluorescence detection of superoxide. Free Radical Biol Med. 2003;34(11):1359–1368. doi:10.1016/S0891-5849(03)00142-4

24. Kojima H, Nakatsubo N, Kikuchi K, et al. Detection and imaging of nitric oxide with novel fluorescent indicators: Diaminofluoresceins. Anal Chem. 1998;70(13):2446–2453. doi:10.1021/ac9801723, PMid:9666719

25. Huang TQ, Lee MS, Oh E, Zhang BT, Seo JS, Park WY. Molecular responses of Jurkat T-cells to 1763 MHz radiofrequency radiation. Int J Radiat Biol. 2008;84(9):734–741. doi:10.1080/09553000802317760, PMid:18821387

26. Huang TQ, Lee MS, Oh EH, et al. Characterization of biological effect of 1763 MHz radiofrequency exposure on auditory hair cells. Int J Radiat Biol. 2008;84(11):909–915. doi:10.1080/09553000802460123, PMid:19016139

27. Gurisik E, Warton K, Martin DK, Valenzuela SM. An in vitro study of the effects of exposure to a GSM signal in two human cell lines: Monocytic U937 and neuroblastoma SK-N-SH. Cell Biol Int. 2006;30(10):793–799. doi:10.1016/j.cellbi.2006.06.001, PMid:16877012

28. Elhag MA, Nabil GM, Attia AM. Effects of electromagnetic field produced by mobile phones on the oxidant and antioxidant status of rats. Pak J Biol Sci. 2007;10(23):4271–4274. doi:10.3923/pjbs.2007.4271.4274

29. Guney M, Ozguner F, Oral B, Karahan N, Mungan T. 900 MHz radiofrequency-induced histopathologic changes and oxidative stress in rat endometrium: Protection by vitamins E and C. Toxicol Ind Health. 2007;23(7):411–420. doi:10.1177/0748233707080906, PMid:18536493

30. Oral B, Guney M, Ozguner F, et al. Endometrial apoptosis induced by a 900-MHz mobile phone: Preventive effects of vitamins E and C. Adv Ther. 2006;23(6):957–973. doi:10.1007/BF02850217, PMid:17276964

31. Ozguner F, Altinbas A, Ozaydin M, et al. Mobile phone-induced myocardial oxidative stress: Protection by a novel antioxidant agent caffeic acid phenethyl ester. Toxicol Ind Health. 2005;21(9):223–230. doi:10.1191/0748233705th228oa, PMid:16342473

32. Sokolovic D, Djindjic B, Nikolic J, et al. Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J Radiat Res (Tokyo). 2008;49(6):579–586. doi:10.1269/jrr.07077, PMid:18827438

33. Yurekli AI, Ozkan M, Kalkan T, et al. GSM base station electromagnetic radiation and oxidative stress in rats. Electromagn Biol Med. 2006;25(3):177–188. doi:10.1080/15368370600875042, PMid:16954120

34. Balci M, Devrim E, Durak I. Effects of mobile phones on oxidant/antioxidant balance in cornea and lens of rats. Curr Eye Res. 2007;32(1):21–25. doi:10.1080/02713680601114948, PMid:17364731

35. Joubert V, Leveque P, Rametti A, Collin A, Bourthoumieu S, Yardin C. Microwave exposure of neuronal cells in vitro: Study of apoptosis. Int J Radiat Biol. 2006;82(4):267–275. doi:10.1080/09553000600649232, PMid:16690594

36. Palumbo R, Brescia F, Capasso D, et al. Exposure to 900 MHz radiofrequency radiation induces caspase 3 activation in proliferating human lymphocytes. Radiat Res. 2008;170(3):327–334. doi:10.1667/RR1098.1, PMid:18763855

37. Janicke RU. MCF-7 breast carcinoma cells do not express caspase-3. Breast Cancer Res Treat. 2009;117(1):219–221.

38. Disanza A, Steffen A, Hertzog M, Frittoli E, Rottner K, Scita G. Actin polymerization machinery: The finish line of signaling networks, the starting point of cellular movement. Cell Mol Life Sci. 2005;62(9):955–970. doi:10.1007/s00018-004-4472-6, PMid:15868099

39. Su Y, Kondrikov D, Block ER. Beta-actin: A regulator of NOS-3. Sci STKE. 2007;2007(404):pe52. doi:10.1126/stke.4042007pe52, PMid:17878410

40. Thomas CM, Smart EJ. Caveolae structure and function. J Cell Mol Med. 2008;12(3):796–809. doi:10.1111/j.1582-4934.2008.00295.x, PMid:18315571

41. Ji Y, Ferracci G, Warley A, et al. β-Actin regulates platelet nitric oxide synthase 3 activity through interaction with heat shock protein 90. Proc Natl Acad Sci USA. 2007;104(21):8839–8844. doi:10.1073/pnas.0611416104, PMid:17502619, PMCid:1885589
Published
2011-09-12