Synthesis of novel glycopolymer brushes via a combination of RAFT-mediated polymerisation and ATRP

  • Reda Fleet University of Stellenbosch
  • Eric T.A. van den Dungen University of Stellenbosch
  • Bert Klumperman University of Stellenbosch
Keywords: ATRP, grafting density, glycopolymer, macroinitiators, RAFT

Abstract

Glycopolymers (synthetic sugar-containing polymers) have become increasingly attractive to polymer chemists because of their role as biomimetic analogues and their potential for commercial applications. Glycopolymers of different structures confer high hydrophilicity and water solubility and can therefore be used for specialised applications, such as artificial materials for a number of biological, pharmaceutical and biomedical uses. The synthesis and characterisation of a series of novel glycopolymer brushes, namely poly(2-(2-bromoisobutyryloxy) ethyl methacrylate)-g-poly(methyl 6-O-methacryloyl-α-D-glucoside (P(BIEM)-g-P(6-O-MMAGIc)), poly(2-(2-bromoisobutyryloxy) ethyl methacrylate-co-methyl methacrylate)-g-poly(methyl 6-O-methacryloyl-α-D-glucoside) P(BIEM-co-MMA)-g-P(6-O-MMAGIc), poly(2-(2-bromoisobutyryloxy) ethyl methacrylate-b-methyl methacrylate)-g-poly(methyl 6-O-methacryloyl-α-D-glucoside) P(BIEM-b-MMA)-g-P(6-O-MMAGIc) and poly(4-vinylbenzyl chloride-alt-maleic anhydride)-g-poly(methyl 6-O-methacryloyl-α-D-glucoside) (P(Sd-alt-MAnh)-g-P(6-O-MMAGIc)) are described in this paper. Reversible addition-fragmentation chain transfer (RAFT)-mediated polymerisation was used to synthesise four well-defined atom transfer radical polymerisation (ATRP) macroinitiators (the backbone of the glycopolymer brushes). These ATRP macroinitiators were subsequently used in the ‘grafting from’ approach (in which side chains are grown from the backbone) to prepare high molar mass and low polydispersity index glycopolymer brushes with different grafting densities along the backbone. The number average molar mass of the glycopolymer brushes was determined using size exclusion chromatography with a multi-angle laser light scattering detector and further structural characterisation was conducted using 1H-nuclear magnetic resonance spectroscopy. The results confirmed that glycopolymer brushes were successfully synthesised via a combination of RAFT-mediated polymerisation and ATRP.

Author Biography

Bert Klumperman, University of Stellenbosch
Eindhoven University of Technology

References

1. Zhang M, Müller AHE. Cylindrical polymer brushes. J Polym Sci Part A: Polym Chem. 2005;43:3461–3481. doi:10.1002/pola.20900

2. Zhang M, Breiner T, Mori H, Müller AHE. Amphiphilic cylindrical brushes with poly(acrylic acid) core and poly(n-butyl acrylate) shell and narrow length distribution. Polymer. 2003;44(5):1449–1458. doi:10.1016/S0032-3861(02)00774-7

3. Venkatesh R, Yajjou L, Koning CE, Klumperman B. Novel brush copolymers via controlled radical polymerisation. Macromol Chem Phys. 2004;205:2161–2168. doi:10.1002/macp.200400252

4. Advincula RC, Brittain WJ, Caster KC, Ruhe J. Polymer brushes: Synthesis, characterisation, applications. Weinheim:Wiley-VCH; 2004.

5. Barbey R, Lavanant L, Paripovic D, et al. Polymer brushes via surface-initiated controlled radical polymerisation: Synthesis, characterisation, properties, and applications. Chem Rev. 2009;109(11):5437–5527. doi:10.1021/cr900045a , PMid:19845393

6. Lee H, Matyjaszewski K, Yu S, Sheiko S. Molecular brushes with spontaneous gradient by atom transfer radical polymerisation. Macromolecules. 2005;38(20):8264–8271. doi:10.1021/ma051231z

7. Mori H, Müller AHE. New polymeric architectures with (meth)acrylic acid segments. Prog Polym Sci. 2003;28:1403–1439. doi:10.1016/S0079-6700(03)00076-5

8. Borner HG, Duran D, Matyjaszewski K, Da Silva M, Sheiko S. Synthesis of molecular brushes with gradient in grafting density by atom transfer polymerisation. Macromolecules. 2002;35(9):3387–3394. doi:10.1021/ma012100a< /P >

9. Borner HG, Beers K, Matyjaszewski K, Sheiko S, Moller M. Synthesis of molecular brushes with block copolymer side chains using atom transfer radical polymerisation. Macromolecules. 2001;34(13):4375–4383. doi:10.1021/ma010001r

10. Neugebauer D, Sumerlin BS, Matyjaszewski K, Goodhart B, Sheiko S. How dense are cylindrical brushes grafted from a multifunctional macroinitiator. Polymer. 2004;45:8173–8179. doi:10.1016/j.polymer.2004.09.069

11. Sumerlin BS, Neugebauer D, Matyjaszewski K. Initiation efficiency in the synthesis of molecular brushes by grafting from via atom transfer radical polymerisation. Macromolecules. 2005;38:702–708. doi:10.1021/ma048351b

12. Neugebauer D, Zhang Y, Pakula T, Matyjaszewski K. Heterografted PEO-PnBA brush copolymers. Polymer. 2003;44:6863–6871. doi:10.1016/j. polymer.2003.08.028

13. Hawker CJ, Bosman AW, Harth E. New polymer synthesis by nitroxide mediated living radical polymerisations. Chem Rev. 2001;101:3661–3688. doi:10.1021/ cr990119u, PMid:11740918

14. Beers KL, Gaynor SG, Matyjaszewski K, Sheiko S, Moller M. The synthesis of densely grafted copolymers by atom transfer radical polymerisation. Macromolecules. 1998;31:9413–9415. doi:10.1021/ma981402i

15. Albertin L, Stenzel MH, Barner-Kowollik C, Foster R, Davis P. Well-defined diblock glycopolymers from RAFT polymerisation in homogeneous aqueous medium. Macromolecules. 2005;38:9075–9084. doi:10.1021/ma051310a

16. You LC, Lu FZ, Li ZC, Zhang W, Li FM. Glucose-sensitive aggregates formed by poly(ethylene oxide)-block-poly(2-glucosyloxyethyl acrylate) with concanavalin A in dilute aqueous medium. Macromolecules. 2003;36:1–4. doi:10.1021/ma025641o

17. Bernard J, Hao X, Davis TP, Barner-Kowollik C, Stenzel MH. Synthesis of various glycopolymer architectures via RAFT polymerisation: From block copolymers to stars. Biomacromolecules. 2006;7:232–238. doi:10.1021/bm0506086 , PMid:16398520

18. Novick SJ, Dordick JS. Preparation of active and stable biocatalytic hydrogels for use in selective transformations. Chem Mater. 1998;10:955–958. doi:10.1021/ cm9708123

19. Palomino E. Carbohydrate handles as natural resources in drug delivery. Adv Drug Deliv Rev. 1994;13:311–323. doi:10.1016/0169-409X(94)90017-5

20. Wulff G, Zhu L, Schmidt H. Investigations on surface-modified bulk polymers. 1. Copolymers of styrene with a styrene moiety containing a sugar monomer. Macromolecules. 1997;30:4533–4539. doi:10.1021/ma961890z

21. Karamuk E, Mayer J, Wintermantel E, Akaike T. Partially degradable film/fabric composites: Textile scaffolds for liver cell culture. Artif Organs. 1999;23:881–884. doi:10.1046/j.1525-1594.1999.06308.x , PMid:10491038

22. Okada M. Molecular design and syntheses of glycoploymers. Prog Polym Sci. 2001;26:67–104. doi:10.1016/S0079-6700(00)00038-1

23. Lowe AB, Sumerlin BS, McCormick CL. The direct polymerisation of 2-methacryloxyethyl glucoside via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerisation. Polymer. 2003;44:6761–6765. doi:10.1016/j.polymer.2003.08.039

24. Okada M, Tachikawa K, Aoi K. Biodegradable polymers based on renewable resources. II. Synthesis and biodegradability of polyesters containing furan rings. J Polym Sci Part A: Polym Chem. 1997;35:2729–2737. doi:10.1002/(SICI)1099-0518(19970930)35:13<2729::AID-POLA18>3.0.CO;2-D

25. Granville AM, Quémener D, Davis TP, Barner-Kowollik C, Stenzel MH. Chemo-enzymatic synthesis and RAFT polymerisation of 6-methacryloyl mannose: A suitable glycopolymer for binding to the tetrameric lectin concanavalin A. Macromol Symp. 2007;255(1):81–89. doi:10.1002/masy.200750909

26. Waters Millennium32. Version 3.05. Milford, MA:Waters Corporation.

27. ASTRA® V. Santa Barbara, CA: Wyatt Technology Corporation.

28. Moad G, Chiefari J, Chong BY, et al. Living free radical polymerisation with reversible addition fragmentation chain transfer (the life of RAFT). Polym Int. 2000;49:993–1001. doi:10.1002/1097-0126(200009)49:9<993::AID-PI506>3.0.CO;2-6

29. Matyjaszewski K, Gaynor SG, Kulfan A, Podwika M. Preparation of hyperbranched polyacrylates by atom transfer radical polymerisation. Macromolecules. 1997;30(17):5192–5194. doi:10.1021/ma970359g

30. Haddleton DM, Crossman MC, Dana BH, et al. Atom transfer polymerisation of methyl methacrylate mediated by alkylpyridylmethanimine type ligands, copper(I) bromide, and alkyl halides in hydrocarbon solution. Macromolecules. 1999;32:2110–2119. doi:10.1021/ma981670g

31. Albertin L, Stenzel M, Barner-Kowollik C, Foster LJR, Davis TP. Well-defined glycopolymers from RAFT polymerisation: Poly(methyl 6-O-methacryloyl-alpha-D-glucoside) and its block copolymer with 2 hydroxyethyl methacrylate. Macromolecules. 2004;37:7530–7537. doi:10.1021/ma049129+

32. Zhang Y, Huang J, Chen Y. Reactive dendronized copolymer of styryl dendron and maleic anhydride: A single molecular scaffold. Macromolecules. 2005;38(12):5069–5077. doi:10.1021/ma047449n

33. Wang T-L, Lee H-M, Kuo P-L. Functional polymers for colloidal applications. XIV. Syntheses of styrene-maleic anhydride copolymers with different charges and their ability to disperse kaolinite particles. J Appl Polym Sci. 2000;78(3):592–602. doi:10.1002/1097-4628(20001017)78:3<592::AID-APP140>3.0.CO;2-U

34. Saad GR, Morsi RE, Mohammady SZ, Elsabee MZ. Dielectric relaxation of monoesters based poly(styrene-co-maleic anhydride) copolymer. J Polym Res. 2008;15:115–123. doi:10.1007/s10965-007-9150-6

35. Cheng G, Boker A, Zhang M, Krausch G, Müller AHE. Amphiphilic cylindrical core-shell brushes via a grafting from process using ATRP. Macromolecules. 2001;34(20):6883–6888. doi:10.1021/ma0013962

36. De Vries A, Klumperman B, De Wet-Roos D, Sanderson RD. The effect of reducing monosaccharides on the atom transfer radical polymerisation of butyl methacrylate. Macromol Chem Phys. 2001;202:1645–1648. doi:10.1002/1521-3935(20010601)202:9<1645::AID-MACP1645>3.0.CO;2-K

37. Russum J, Jones CW, Schork FJ. Continuous reversible addition-fragmentation chain transfer polymerisation in miniemulsion utilizing a multi-tube reaction system. Macromol Rapid Comm. 2004;25:1064–1068. doi:10.1002/marc.200400086

38. Fleet R, McLeary JB, Grumel V, et al. Preparation of new multiarmed RAFT agents for the mediation of vinyl acetate polymerisation. Macromol Symp. 2007;255(1):8–19. doi:10.1002/masy.200750902

39. Djalali R, Li S-Y, Schmidt M. Amphipolar core shell cylindrical brushes as templates for the formation of gold clusters and nanowires. Macromolecules. 2002;35(11):4282–4288. doi:10.1021/ma0113733

40. Sheiko SS, Moller M. Visualization of macromolecules: A first step to manipulation and controlled response. Chem Rev. 2001;101(12):4099–4124. doi:10.1021/ cr990129v, PMid:11740928

41. Muthukrishnan S, Zhang M, Burkhardt M, et al. Molecular sugar sticks: Cylindrical glycopolymer brushes. Macromolecules. 2005;38(19):7926–7934. doi:10.1021/ ma0515073

42. Kumaki J, Hashimoto T. Conformational change in an isolated single synthetic polymer chain on a mica surface observed by atomic force microscopy. J Am Chem Soc. 2003;125(16):4907–4917. doi:10.1021/ja0290429, PMid:12696910

43. Severac R, Lacroix-Desmazes P, Boutevin B. Reversible addition-fragmentation chain-transfer (RAFT) copolymerisation of vinylidene chloride and methyl acrylate. Polym Int. 2002;51:1117–1122. doi:10.1002/pi.932
Published
2011-03-22