Screening South African potato, tomato and wheat cultivars for five carotenoids

  • Charlotte S. Mashaba Council for Scientific and Industrial Research, Biosciences
  • Eugenia Barros Council for Scientific and Industrial Research, Biosciences
Keywords: carotenoids, tomato, potato, wheat, malnutrition, high-performance liquid chromatography


In South Africa malnutrition is of great concern. Vitamin A deficiency is one of the leading causes of infections as a result of micronutrient malnutrition. Although supplementation and food fortification programmes exist, these either are not available or are unaffordable to communities in remote rural areas. The selection of crops that are naturally rich in provitamin A (β-carotene) and other carotenoids that can be recommended to small-scale farmers for breeding and for food production, could be an effective way to address vitamin A deficiencies and associated diseases. The aim of this study was to profile two cultivars each of potato, tomato, bread wheat and durum wheat, which are highly consumed crops in South Africa, for their carotenoid content using high-performance liquid chromatography. To this effect, reliable extraction and quantification of five carotenoids – lutein, zeaxanthin, canthaxanthin, β-carotene and lycopene – were performed for these crops. Lutein and zeaxanthin were found to be the major carotenoids in potato, whilst lycopene was the major carotenoid in tomato. In durum wheat, only lutein and zeaxanthin were identified whilst bread wheat contained lutein, zeaxanthin and β-carotene. The methodology used proved to be robust and suitable to screen a large number of potato, tomato and wheat cultivars for their carotenoid content.


1. Caulfield LE, De Onis M, Blossner M, Black RE. Undernutrition as an underlying cause of child deaths associated with diarrhoea, pneumonia, malaria, and measles. Am J Clin Nutr. 2004;80:193–198. PMid:15213048

2. Bryce J, Boschi-Pinto C, Shibuya K, Black RE, the WHO Child Health Epidemiology Reference Group. WHO estimates of the causes of death in children. Lancet. 2005;365:1147–1152. doi:10.1016/S0140-6736(05)71877-8

3. International Union of Nutritional Science (IUNS). Malnutrition task force [document on the Internet]. c2010 [cited 2011 March 24]. Available from:

4. Hidalgo A, Brandolini A, Pompei C, Piscozzi R. Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). J Cereal Sci. 2006;44:182–193. doi:10.1016/j.jcs.2006.06.002

5. Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res. 2004;43:228–265. doi:10.1016/j.plipres.2003.10.002, PMid:15003396

6. Berg H, Faulks R, Granado HF, et al. The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J Sci Food Agric. 2000;80:880–912. doi:10.1002/(SICI)1097-0010(20000515)80:7<880::AID-JSFA646>3.0.CO;2-1

7. Semba RD. The role of vitamin A and related retinoids in immune function. Nutr Rev. 1998;56:S38-S48. doi:10.1111/j.1753-4887.1998.tb01643.x

8. During A, Harrison EH. Mechanisms of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco-2 cells. J Lipid Res. 2007;48:2283–2294. doi:10.1194/jlr.M700263-JLR200, PMid:17644776

9. Unlu NZ, Bohn T, Clinton SK, Schwartz SJ. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. Am Soc Nutr Sci. 2005;135:431–436.

10. Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab. 2007;51:301–323. doi:10.1159/000107673, PMid:17726308

11. Dorgan JF, Sowell A, Swanson CA, et al. Relationships of serum carotenoids, retinol, α-tocopherol, and selenium with breast cancer risk: Results from a prospective study in Columbia, Missouri (United States). Cancer Causes Control. 1998;9:89–97. doi:10.1023/A:1008857521992, PMid:9486468

12. Toniolo P, Van Kappel AL, Akhmedkhanov A, et al. Serum carotenoids and breast cancer. Am J Epidemiol. 2001;153:1142–1147. doi:10.1093/aje/153.12.1142, PMid:11415946

13. Sesso HD, Buring JE, Norkus EP, Gaziano JM. Plasma lycopene, other carotenoids, and retinol and the risk of cardiovascular disease in women. Am J Clin Nutr. 2004;79:47–53. PMid:14684396

14. Gale CR, Hall NF, Phillips DIW, Martyn CN. Lutein and zeaxanthin status and risk of age-related macular degeneration. Invest Ophthalmol Visual Sci. 2003;44:2461–2465. doi:10.1167/iovs.02-0929

15. Mortensen A, Skibsted LH, Sampson J, Rice-Evans C, Everett SA. Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Lett. 1997;418:91–97. doi:10.1016/S0014-5793(97)01355-0

16. Landrum JT, Bone RA. Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys. 2001;385:28–40. doi:10.1006/abbi.2000.2171, PMid:11361022

17. Olmedilla B, Granado F, Blanco I, Vaquero M, Cajigal C. Lutein in patients with cataracts and age-related macular degeneration: A long-term supplementation study. J Sci Food Agric. 2001;81:904–909. doi:10.1002/jsfa.905

18. Seybold C, Fröhlich K, Bitsch R, Otto K, Böhm V. Changes in contents of carotenoids and vitamin E during tomato processing. J Agric Food Chem. 2004;52:7005–7010. doi:10.1021/jf049169c, PMid:15537310

19. Humphries JM, Khachik F. Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat, and pasta products. J Agric Food Chem. 2003;51:1322–1327. doi:10.1021/jf026073e, PMid:12590476

20. Abdel-Aal EM, Young JC, Wood PJ, et al. Einkorn: A potential candidate for developing high lutein wheat. Cereal Chem. 2002;79:455–457. doi:10.1094/CCHEM.2002.79.3.455

21. Santra M, Santra DK, Rao VS, Taware SP, Tamhankar SA. Inheritance of β-carotene concentration in durum wheat (Triticum turgidum L. ssp. durum). Euphytica. 2005;144:215–221. doi:10.1007/s10681-005-5815-6

22. Abdel-Aal EM, Young JC, Rabalski I, Hucl P, Fregeu-Reid J. Identification and quantification of seed carotenoids in selected wheat species. J Agric Food Chem. 2007;55:787–794. doi:10.1021/jf062764p, PMid:17263475

23. Panfili G, Fratianni A, Irano M. Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. J Agric Food Chem. 2004;52:6373–6377. doi:10.1021/jf0402025, PMid:15478994

24. Leenhardt F, Lyan B, Rock E, et al. Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. Eur J Agron. 2006;25:170–176. doi:10.1016/j.eja.2006.04.010

25. Bouis HE. Enrichment of food staples through plant breeding: A new strategy for fighting micronutrient malnutrition. Nutrition. 2000;16:701–704. doi:10.1016/S0899-9007(00)00266-5

26. Ruel MT, Bouis HE. Plant breeding: A long-term strategy for the control of zinc deficiency in vulnerable populations. Am J Clin Nutr. 1998;68:488S–494S. PMid:9701166

27. Welch RM, Graham RD. Breeding crops for enhanced micronutrient content. Plant Soil. 2002;245:205–214. doi:10.1023/A:1020668100330

28. Gregorio GB. Progress in breeding for trace minerals in staple crops. J Nutr. 2002;132:500S–502S. PMid:11880579

29. Breithaupt DE, Bamedi A. Carotenoids and carotenoid esters in potatoes (Solanum tuberosum L.): New insights into an ancient vegetable. J Agric Food Chem. 2002;50:7175–7181. doi:10.1021/jf0257953, PMid:12428979

30. Diretto G, Tavazza R, Welsch R, et al. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol. 2006;6:13–23. doi:10.1186/1471-2229-6-13, PMid:16800876 PMid:1570464

31. Agarwal A, Shen H, Agarwal S, Rao AV. Lycopene content of tomato products: Its stability, bioavailability and in vivo antioxidant properties. J Medicinal Food. 2001;4:9–15. doi:10.1089/10966200152053668, PMid:12639283

32. Khachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao D, Katz NB. Tomato carotenoids and their impact on human health. Exp Biol Med. 2002;227:845–851.