A review of shaped carbon nanomaterials

  • Neil J. Coville University of the Witwatersrand
  • Sabelo D. Mhlanga University of the Witwatersrand
  • Edward N. Nxumalo University of the Witwatersrand
  • Ahmed Shaikjee University of the Witwatersrand
Keywords: carbon nanotubes, carbon spheres, carbon helices, graphene, carbon fibres

Abstract

Materials made of carbon that can be synthesised and characterised at the nano level have become a mainstay in the nanotechnology arena. These carbon materials can have a remarkable range of morphologies. They can have structures that are either hollow or filled and can take many shapes, as evidenced by the well-documented families of fullerenes and carbon nanotubes. However, these are but two of the shapes that carbon can form at the nano level. In this review we outline the types of shaped carbons that can be produced by simple synthetic procedures, focusing on spheres, tubes or fibres, and helices. Their mechanisms of formation and uses are also described.

Author Biographies

Neil J. Coville, University of the Witwatersrand
DST/NRF Centre of Excellence in Strong Materials, and Molecular Sciences Institute

School of Chemistry

Sabelo D. Mhlanga, University of the Witwatersrand
DST/NRF Centre of Excellence in Strong Materials, and Molecular Sciences Institute

School of Chemistry

Edward N. Nxumalo, University of the Witwatersrand
DST/NRF Centre of Excellence in Strong Materials, and Molecular Sciences Institute

School of Chemistry

Ahmed Shaikjee, University of the Witwatersrand
DST/NRF Centre of Excellence in Strong Materials, and Molecular Sciences Institute

School of Chemistry

References

1. Levi P. The periodic table. New York: Shocken Books, 1984; p. 227.

2. Dresselhaus MS, Dressalhaus G, Eklund PC. Science of fullerenes and carbon nanotubes. New York: Academic Press; 1996.

3. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. doi:10.1038/354056a0

4. Salvetat J-P, Briggs GAD, Bonard J-M, et al. Elastic and shear moduli of single walled carbon nanotube ropes. Phys Rev Lett. 1999;82(5):944–947. doi:10.1103/PhysRevLett.82.944

5. Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2005;6(1):96–100. doi:10.1021/nl052145f , PMid:16402794

6. Nkosi BS, Coville NJ, Adams MD, Hutchings GJ. Hydrochlorination of acetylene using carbon supported gold catalysts: A study of catalyst reactivation. J Catal. 1991;128:378–386. doi:10.1016/0021-9517(91)90296-G

7. Adams MD. The elution of gold from activated carbon at room temperature using sulfide solutions. J S Afr Inst Mining Metallurgy. 1994;Aug:187–198.

8. McKune C. Pebble bed modular reactor demonstration plant is funded but not constructed. S Afr J Sci. 2010;106(5/6):1–3. doi:10.4102/sajs.v106i5/6.287

9. Geim AK, Novoselov KS. The rise of graphene. Nature Mater. 2007;6:183–191. doi:10.1038/nmat1849 , PMid:17330084

10. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603–605. doi:10.1038/363603a0

11. De J, Krijn P, Geus JW. Carbon nanofibres: Catalytic synthesis and applications. Catal Rev. 2000;42(4):481–510. doi:10.1081/CR-100101954

12. Monthioux M, Kuznetsov VL. Who should be given the credit for the discovery of carbon nanotubes? Carbon. 2006;44:1621–1623. doi:10.1016/j. carbon.2006.03.019

13. Mhlanga SD, Mondal KC, Carter R, Witcomb MJ, Coville NJ. The effect of catalyst preparation method on the catalytic synthesis of multiwalled carbon nanotubes using Fe-Co/CaCO3 catalysts. S Afr J Chem. 2009;62:67–76.

14. Nyamori VO, Mhlanga SD, Coville NJ. The use of organometallic transition metal complexes in the synthesis of shaped carbon nanomaterials. J Organomet Chem. 2008;693:2205–2222. doi:10.1016/j.jorganchem.2008.04.003

15. Nyamori VO, Nxumalo EN, Coville NJ. The effect of arylferrocene ring substituents on the synthesis of multi-walled carbon nanotubes. J Organomet Chem. 2009;694(14):2222–2227. doi:10.1016/j.jorganchem.2009.02.031

16. Mohlala MS, Liu XY, Robinson JM, Coville NJ. Organometallic precursors for use as catalysts in carbon nanotube synthesis. Organometallics. 2005;24:972–976. doi:10.1021/om049242o

17. Balasubramanian K, Burghard M. Chemically functionalised carbon nanotubes. Small. 2005;1(2):180–192. doi:10.1002/smll.200400118 , PMid:17193428

18. Taylor R. Lecture notes on fullerenes. London: Imperial College Press; 1999. doi:10.1142/9781848160675

19. Nxumalo EN, Nyamori VO, Coville NJ. CVD synthesis of nitrogen doped carbon nanotubes using ferrocene/aniline mixtures. J Organomet Chem. 2008;693:2942–2948. doi:10.1016/j.jorganchem.2008.06.015

20. Endo M, Hayashi T, Kim YA, Terrones M, Dresselhaus MS. Applications of carbon nanotubes in the twenty-first century. Phil Trans Roy Soc Lond A. 2004;362:2223–2238. doi:10.1098/rsta.2004.1437 , PMid:15370479

21. Nyamori VO, Coville NJ. Effect of ferrocene/carbon ratio on the size and shape of carbon nanotubes and microspheres. Organometallics. 2007;26:4083–4085. doi:10.1021/om7003628

22. Osváth Z, Koós AA, Horváth ZE, et al. Arc-grown Y-branched carbon nanotubes observed by scanning tunneling microscopy (STM). Chem Phys Lett. 2002;365(3–4):338–342. doi:10.1016/S0009-2614(02)01483-5

23. Durbach SH, Krause RW, Witcomb MJ, Coville NJ. Synthesis of branched carbon nanotubes (BCNTs) using copper catalysts in a hydrogen-filled DC arc discharger. Carbon. 2009;43:635–644. doi:10.1016/j.carbon.2008.10.037

24. Ebbesen TW, editor. Carbon nanotubes: Preparation and properties. Boca Raton: CRC Press; 1997.

25. Tomanek D, Enbody RJ. Science and application of nanotubes. New York: Springer-Verlag; 2000.

26. Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ. Fischer-Tropsch synthesis over iron catalysts supported on carbon nanotubes. Appl Catal General A. 2005;287:60–67. doi:10.1016/j.apcata.2005.03.029

27. Bahome MC, Jewell LL, Padayachy K, et al. Fe:Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer-Tropsch synthesis. Appl Catal General A. 2007;328:243–251. doi:10.1016/j.apcata.2007.06.018

28. Nakayama Y, Akita S. Field-emission device with carbon nanotubes for a flat panel display. Synth Met. 2001;117:207–210. doi:10.1016/S0379-6779(00)00365-9

29. Wang QH, Setlur AA, Lauerhaas, JM, Dai JY, Seelig EW, Chang RPH. A nanotube-based field-emission flat panel display. Appl Phys Lett. 1998;72(22):2912–2913. doi:10.1063/1.121493

30. Mordkovich VZ. Carbon nanofibres: A new ultrahigh-strength material for chemical technology. Theor Found Chem Eng. 2003;37(5):429–438. doi:10.1023/A:1026082323244

31. Kroto HW, McKay K. The formation of quasi-icosahedral spiral shell carbon particles. Nature. 1988;331:328–331. doi:10.1038/331328a0

32. Krätschmer W, Fostiropoulos K, Huffman DR. The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: Evidence for the presence of the CbO molecule. Chem Phys Lett. 1990;170:167–170. doi:10.1016/0009-2614(90)87109-5

33. Guldi DM, Prato M. Excited-state of C60 fullerene derivatives. Acc Chem Res. 2000;33:695–703. doi:10.1021/ar990144m , PMid:11041834

34. Mamo MA, Machado WS, van Otterlo WAL, Coville NJ, Hümmelgen IA. Simple write-once-read-many-times memory device base on carbon spheres-poly(vynilphenol) composite. Organ Electron. In press.

35. Khan SD, Ahmad S. Modelling of C2 to the addition of C60. Nanotechnology. 2006;17:4654–4658. doi:10.1088/0957-4484/17/18/021

36. Deshmukh AA, Mhlanga SD, Coville NJ. Carbon spheres: A review. Mater Sci Eng R. 2010;70(1–2):1–28. doi:10.1016/j.mser.2010.06.017

37. Fine PM, Cass GR, Simonet BR. Environ Sci Technol. 1999;33:2352–2355. doi:10.1021/es981039v

38. Xia Y, Gates B, Yin Y, Lu Y. Monodispersed colloidal spheres: Old materials with new applications. Adv Mater. 2000;12:693–713. doi:10.1002/(SICI)1521- 4095(200005)12:10<693::AID-ADMA693>3.3.CO;2-A

39. Inagaki M. Discussion of the formation of nanometric texture in spherical carbon bodies. Carbon. 1997;31:711–713. doi:10.1016/S0008-6223(97)86645-6

40. Serp PH, Feurer R, Kalck PH, Kihn Y, Faria JL, Figueiredo JL. A chemical vapour deposition process for the production of carbon nanospheres. Carbon. 2001;39:621–626. doi:10.1016/S0008-6223(00)00324-9

41. Ma Y, Hu Z, Huo K, et al. A practical route to the production of carbon nanocages. Carbon. 2005;43:1667–1672. doi:10.1016/j.carbon.2005.02.004

42. Papirer E, Lacroix R, Donnet J-B. Chemical modification and surface properties of carbon blacks. Carbon. 1996;34:1521–1529. doi:10.1016/S0008-6223(96)00103 0

43. Xiong H, Moyo M, Rayner MK, Jewell LL, Billing DG, Coville NJ. Autoreduction and catalytic performance of a cobalt Fischer–Tropsch synthesis catalyst supported on nitrogen-doped carbon spheres. ChemCatChem. 2010;2:514–518. doi:10.1002/cctc.200900309

44. Mondal KC, Strydom AM, Tetana Z, et al. Boron doped carbon microspheres. Mater Chem Phys. 2009;114:973–977. doi:10.1016/j.matchemphys.2008.11.008

45. Lahaye J, Ehrburger-Dolle F. Mechanisms of carbon black formation. Correlation with the morphology of aggregates. Carbon. 1994;32:1319–1324. doi:10.1016/0008-6223(94)90118-X

46. Wang ZL, Wang ZC. Pairing of pentagonal and heptagonal carbon rings in the growth of nanosize carbon spheres synthesised by a mixed-valent oxide-catalytic carbonization process. J Phys Chem. 1996;100:17725–17731. doi:10.1021/jp962762f

47. Pol SV, Pol VG, Sherman D, Gedanken A. A solvent free process for the generation of strong, conducting carbon spheres by the thermal degradation of waste polyethylene terephthalate. Green Chem. 2009;11:448–451. doi:10.1039/b819494g

48. Donath E, Sukhorukov GB, Caruso F, Davis SA, Mőhwald H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed. 1998;37(16):2201–2205. doi:10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.3.CO;2-5

49. Davis WR, Slawson RJ, Rigby GR. An unusual form of carbon. Nature. 1953;171:756. doi:10.1038/171756a0

50. Motojima S. Development of ceramic microcoils with 3D-herical/spiral structures. J Cer Soc Jpn. 2008;116(9):921–927. doi:10.2109/jcersj2.116.921

51. Lau TK, Lu M, Hui D. Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures. Compos Part B Eng. 2006;37:437–448. doi:10.1016/j.compositesb.2006.02.008

52. Kawaguchi M, Nozaki K, Motojima S, Iwanaga H. A growth mechanism of regularly coiled carbon fibres through acetylene pyrolysis. J Cryst Growth. 1992;118:309–313. doi:10.1016/0022-0248(92)90077-V

53. Cheng J-B, Du J-H, Bai S. Growth mechanism of carbon microcoils with changing fibre cross-section shape. New Carbon Mater. 2009;24(4):354–358. doi:10.1016/S1872-5805(08)60057-8

54. Motojima S, Kagiya S, Iwanaga H. Vapour-phase formation of micro-coiled carbon fibres using Ni catalyst and PH3 impurity. Mater Sci Eng. 1995;B34:47–52. doi:10.1016/0921-5107(95)01234-6

55. Qin Y, Zhang Y, Sun X. Synthesis of helical and straight carbon nanofibres by chemical vapor deposition using alkali chloride catalysts. Microchim Acta. 2009;164:425–430. doi:10.1007/s00604-008-0078-2

56. Qin Y, Yu L, Wang Y, Li G, Cui Z. Amorphous helical carbon nanofibres synthesised at low temperature and their elasticity and processability. Solid State Commun. 2006;138:5–8. doi:10.1016/j.ssc.2006.01.048

57. Yang S, Chen X, Katsuno T, Motojima S. Controllable synthesis of carbon microcoils/nanocoils by catalysts supported on ceramics using catalyzed chemical vapor deposition process. Mater Res Bull. 2007;42(3):465–473. doi:10.1016/j.materresbull.2006.06.026

58. Szabó A, Fonseca A, Nagy JB, Lambin PH, Biró LP. Structural origin of coiling in coiled carbon nanotubes. Carbon. 2005;43:1628–1633. doi:10.1016/j.carbon.2005.01.025

59. Hernadi K, Thiên-Nga L, Forró L. Growth and microstructure of catalytically produced coiled carbon nanotubes. J Phys Chem B. 2001;105:12464–12468. doi:10.1021/jp011208p

60. Du F, Liu J, Guo Z. Shape controlled synthesis of Cu2O and its catalytic application to synthesise amorphous carbon nanofibres. Mater Res Bull. 2009;44:25–29. doi:10.1016/j.materresbull.2008.04.011

61. Hanson PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsøe H. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science. 2002;295(5562):2053–2055. doi:10.1126/science.1069325 , PMid:11896271

62. Volodin A, Buntinx D, Aslskog M, Fonseca A, Nagy JB, van Haesendonck C. Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett. 2004;4(9):1775–1779. doi:10.1021/nl0491576

63. Chen X, Zhnag S, Dikin DA, et al. Mechanics of a carbon nanocoil. Nano Lett. 2003;3(9):1299–1304. doi:10.1021/nl034367o

64. Motojima S, Hoshiya S, Hishikawa Y. Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands. Carbon. 2003;41:2653–2689. doi:10.1016/S0008-6223(03)00292-6

65. Tang N, Kuo W, Jeng C, Wang L, Lin K, Du Y. Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano. 2010;4(2):781–788. doi:10.1021/nn901417z , PMid:20092354

66. Iijima S, Yudasaka M, Yamada R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett. 1999;309(3-4):165–170. doi:10.1016/S0009-2614(99)00642-9

67. Tsakadze ZL, Levchenko I, Ostrikov K, Xu S. Plasma-assisted self-organized growth of uniform carbon nanocone arrays. Carbon. 2007;45:2022–2030. doi:10.1016/j.carbon.2007.05.030

68. Shang N, Milne WI, Jiang X. Tubular graphite cones with single-crystal nanotips and their antioxygenic properties. J Am Chem Soc. 2007;129:8907–8911. doi:10.1021/ja071830g , PMid:17589995

69. Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Iijima S. Carbon nanohorns as anticancer drug carriers. Mol Pharm. 2005;2(6):475–480. doi:10.1021/mp0500566 , PMid:16323954

70. Rode AV, Gamaly EG, Luther-Davies B. Formation of cluster-assembled carbon nano-foam by high-repetition-rate laser ablation. Appl Phys A Mater Sci Process. 2000;70(2):35–144. doi:10.1007/s003390050025

71. Zhang Y, Sun X. Synthesis of carbon nanofibres and foam by catalytic chemical vapour deposition using a water-soluble alkali salt catalyst. Adv Mater. 2007;19:961–964. doi:10.1002/adma.200602084

72. Jacoby M. Graphene: Carbon as this as can be. Chem Eng News. 2009;87(9):14–20. doi:10.1021/cen-v087n009.p014

73. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 2007;6:652– 655. doi:10.1038/nmat1967 , PMid:17660825

74. Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Architecture of graphdiyne nanoscale films. Chem Commun. 2010;46:3256–3258. doi:10.1039/b922733d , PMid:20442882

75. Hester RE, Harrison RM. Nanotechnology: Consequences for human health and the environment. Issues in environmental science and technology. Cambridge: Royal Society of Chemistry; 2007.
Published
2011-03-25