Optical and electrical properties of NiO for possible dielectric applications

  • Andre Venter NMMU
  • Johannes R. Botha Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth

Abstract

Nickel oxide (NiO) is a versatile wide band gap semiconductor material. At present, transparent conducting oxide films find application as transparent electrodes and window coatings for opto-electronic devices but most are n-type. However p-type conducting films, of which NiO is one, are required as optical windows for devices where minority carrier injection is required. In this study, nickel (Ni) was resistively deposited on glass substrates and oxidised (isochronally) in oxygen at temperatures ranging from 300 ˚C to 600 ˚C. The oxidised Ni layers were subsequently characterised using scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-visible photospectrometry in the range 200 nm – 1000 nm. The four point probe method (van der Pauw geometry) was used to determine the sheet resistances of the oxidised films. SEM results of the surface revealed a strong dependence of the surface texture and particle size on the oxidation temperature and time. XRD performed on the oxidised Ni indicated progressive transformation from nanograined polycrystalline Ni to NiO at elevated temperatures. Film thicknesses, particle sizes, energy band gap and wavelength-dependent refractive indices were determined from transmission and absorbance data.

Author Biography

Andre Venter, NMMU

Physics

Associate Professor

References

1. Gopchandran KG, Joseph B, Abraham JT, Koshy P, Vidyan VK. The preparation of transparent electrically conducting indium oxide films by reactive vacuum evaporation. Vacuum. 1997;48:547. doi:10.1016/S0042-207X(97)00023-7

2. Benny J, Gopchandran KG, Thomas PV, Koshy P, Vaidyan VK. Optical and electrical properties of zinc oxide films prepared by spray pyrolysis. Mater Chem Phys. 1999;58:71.

3. Sasi B, Gopchandran KG, Manoj PK, et al. Preparation of transparent and semiconducting NiO films. Vacuum. 2003;68:149–154. doi:10.1016/S0042-207X(02)00299-3

4. Krier A, Yin M, Smirnov V, et al. The development of room temperature LEDs and lasers for mid-infrared spectral range. Phys Stat Sol A. 2008;205:129. doi:10.1002/pssa.200776833

5. Nel JM, Auret FD, Wu L, Legodi MJ, Meyer WE, Hayes M. Fabrication and characterisation of NiO/ZnO structures. Sens Actuators B. 2004;100:270–276. doi:10.1016/j.snb.2003.12.054

6. Zhou Y, Geng Y, Gu D. Influence of thermal annealing on optical properties and surface morphology of NiOx thin film. Mater Lett. 2007;61:2482–2485. doi:10.1016/j.matlet.2006.09.041

7. Jiang SR, Yan PX, Feng BX, Cai XM, Wang J. The response of a NiOx thin film to a step potential and its electrochromic mechanism. Mater Chem Phys. 2003;77:384. doi:10.1016/S0254-0584(02)00010-X

8. Sasi B, Gopchandran KG. Nanostructured mesoporous nickel oxide thin films. Nanotechnology. 2007;18:115613. doi:10.1088/0957-4484/18/11/115613

9. Cullity DB. Elements of X-ray diffraction. Notre Dame: Addision-Wesley; 1978.

10. Jiang SR, Feng BX, Yan PX, Cai XM, Lu SY. The effect of annealing on the electrochromic properties of microcrystalline NiOx films prepared by reactive magnetron rf sputtering. Appl Surf Sci. 2001;174:125. doi:10.1016/S0169-4332(01)00022-8

11. Patil PS, Kadam LD. Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Appl Surf Sci. 2002;199:211. doi:10.1016/S0169-4332(02)00839-5

12. Chen HL, Lu YM, Hwang WS. Thickness dependence of electrical and optical properties of sputtered nickel oxide films. Thin Solid Films. 2006;498:266. doi:10.1016/j.tsf.2005.07.124

13. Lu YM, Hwang WS, Yang JS, Chuang HC. Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering. Thin Solid Films. 2002;420:54. doi:10.1016/S0040-6090(02)00654-5

14. Sato H, Minami T, Takata S, Yamada T. Transparent conducting p-type NiO thin films prepared by magnetron sputtering.Thin Solid Films. 1993;236:27. doi:10.1016/0040-6090(93)90636-4

15. Pejova B, Kocareva T, Najdoski M, Grozdanov I. Appl Surf Sci. 2000;165:271. doi:10.1016/S0169-4332(00)00377-9

16. Sreemany M, Sen S. A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films. Mater Chem Phys. 2004;83:169–177. doi:10.1016/j.matchemphys.2003.09.030

17. Anderson O, Bange K, Ottermann C. In: Bach H, Krause D, editors. Thin films on glass. Berlin: Springer-Verlag, 1997; p. 137.

18. Meng LJ, Dos Santos MP. Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures. Thin Solid Films. 1993;226:22. doi:10.1016/0040-6090(93)90200-9

19. Aarick J, Aidla A, Kiisller A-A, Uustare T, Sammelselg V. Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition. Thin Solid Films. 1997;305:270. doi:10.1016/S0040-6090(97)00135-1

20. Sujak-Cyrul B, Kolodka B, Misiewics J, Pawlikowski M. Intraband and interband optical transitions in Zn3 AS2 . J Phys Chem Solids. 1982;43(11):1045–1051. doi:10.1016/0022-3697(82)90220-7
Published
2011-01-26